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The problem of the stability of the steady-state rotation of a solid with a cavity 
partly filled with a uniform viscous incompressible liquid occurs in the analysis of models 
of various kinds of turbine machinery (see, for example, [I-3]). In [4] there was an experi- 
mental investigation of the motion of a gyroscope with a cavity containing a stratified non- 
uniform viscous liquid. 

In the present study we use the method of [3] to solve the plane problem of the stability 
in the small of the steady-state rotation of a circular cylinder completely filled with two 
immiscible viscous incompressible liquids, in the case of axially symmetric viscoelastic 
gripping of the cylinder axis when-it rotates when constant angular velocity. 

I. Statement of the Problem. Suppose that a circular cylinder with inner radius a, 
completely filled with two immiscible viscous incompressible liquids with densities Pl, p2 
and viscosities ~i, ~2, is rotating in the steadystatewith angular velocity ~ about the axis 
Olz. In the steady-state rotation condition the axis of the cylinder, which is viscoelasti- 
cally gripped, coincides with 01z, and the liquids filling the cylinder rotate with it like 
a solid, where the interface between them is a cylindrical surface of radius b with axis Olz 
and the less dense liquid (with density P2) is in the central part of the cylinder. 

We shall consider the problem of the stability of the steady-state rotation of the cyl- 
inder with liquid filling in a linear approximation and in the framework of a plane model, 
i.e., assuming that in the perturbed motion the cylinder and the liquids filling it undergo 
plane-parallel displacements perpendicular to the axis OlZ, where the field of velocities, 
the pressure, and the density are independent of the coordinate along this axis. The abso- 
lute angular velocity of the rotation of the cylinder in the perturbed motion will be con- 
sidered constant and equal to ~. 

We introduce the fixed rectangular coordinate system O1xlx2z (01z is the axis of steady- 
state rotation of the cylinder). The system of linearized equations of the plane model and 
the boundary conditions associated with them include: I) the equations of the translational 
motion of the cylinder parallel to the plane 01xlx2 

Mx~+Hx~§ 1=1,2, (1.1) 
0 

where the xj are the coordinates of the point of intersection of the cylinder axis with the 
plane Olxlx2; the Fj are the components of the force with which the liquid filling acts upon 
a unit length of the cylinder; M is the mass of a unit length of the cylinder; H and K are, 
respectively, the coefficients of damping and rigidity of gripping of the cylinder axis di- 
vided by its length; 2) the condition ~ = const; 3) the equations of motion of the viscous 
incompressible liquid in the plane 01xlx2, linearized near the steady-state quasisolid rota- 
tion of the liquid about the axis 01z; 4) the condition for the adhesion of the liquid to the 
inner surface of the cylinder, carried over in a linear approximation on the basis of the 
deviations from the state of steady-state rotation onto the surface x~ + x~ = a2; 5) con- 
tinuity of the velocities and the stresses and the kinematic condition on the interface be- 
tween the liquids in the linear approximation on the basis of the deviations from the state 
of steady-state quasisolid rotation of the liquids; 6) expressions determining the components 
of the force with which the liquid filling acts on a unit length of the cylinder. 

The above-listed eqnations in the deviations from steady-state rotation and the boundary 
conditions associated with them admit of particular solutions proportional to e It, where 
is an eigenvalue. The steady-state rotation of the cylinder with the liquid filling will 
be considered stable in the small if all the I have negative real parts and will be considered 
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unstable if at least one X has a positive real part. 

2. Method of Investigating the Stability. If the eigenvalues are continuous functions 
of the parameters of the problem, a change in the degree of instability in the system takes 
place when an imaginary %,occurs. Since the system I-6 is invariant under the coordinate 
transformation xz = x2, x2 = --xz, we can show as in [3] that all the values of the parameters 
for which there exists an imaginary eigenvalue ~ = im can be found from the conditions of 
realizability of circular precession of a cylinder with liquid filling, i.e., such a motion 
that the point of intersection of the cylinder axis with the plane Ozxzx2 describes a circle 
with frequency ~ and the deviations of the hydrodynamic elements from the steady-state values 
vary with time proportionally to e imt. 

Suppose that the rotating cylinder filled with two immiscible viscous incompressible 
liquids undergoes circular precession with frequency w. We introduce the noninertial mea- 
surement system 0~, bound to the line of centers 010 (Fig. I). As is shown in the appendix, 
in the case of circular precession, the field of velocities, the pressure, and the position 
of the interface between the liquids in the system 0~ will be independent of time. 

Thus, solving the problem of steady-state motion of the liquids in the system O~n, cal- 
culating the force with which the liquid filling acts on the cylinder in the case of circular 
precession, we can use the equations of translational motion of the cylinder, (I.1), to find 
the conditions imposed on the problem parameters for which it is possible to have circular 
precession of the cylinder with the liquid filling. These conditions determine the bound- 
aries of the regions with different degrees of instability in the space of problem parameters, 
in particular the boundary of the region of stability. 

3. The Hydrodynamic Problem. Suppose that an infinite cylinder with inner radius a, 
completely filled with two immiscible liquids, is rotating with absolute angular velocity 

about its axis and undergoing precession along a circle of small radius E with frequency 
(see Fig. I). On the inner surface of the cylinder there is a layer of uniform incompres- 

sible liquid With density Pz and viscosity pz, and in its central part there is a liquid with 
density P2 and viscosity p2. 

When E = 0, we have a steady-state motion of the liquids in which they rotate like a 
solid with angular velocity ~ about the axis of the cylinder. In this case the interface 
between the liquids is a cylindrical surface of radius b which is coaxial with the rotating 
cylinder. 

In the noninertial system O~n, which is rigidly bound to the line of centers OzO, we 
introduce the coordinates r and ~ (see Fig. I). We consider the steady-state motions of the 
liquid in the plane O~q which are close to quasisolid rotation of the kind which the liquid 
can undergo when e = 0: 

~' = 0 ,  v' = ( ~ -  o )r ,  ( 3 . 1 )  

where u '  and v '  a r e  the  r a d i a l  and a z i m u t h a l  components  of  the  v e l o c i t y  in  the  sys t em O~n. 

The Nav ie r - -S tokes  e q u a t i o n s  f o r  s t e a d y - s t a t e  mo t ions  in  the  p l a n e  06n, l i n e a r i z e d  n e a r  
( 3 . 1 ) ,  can be w r i t t e n  in  t he  form 

. Ou~t 
(~2 - -  co) ~ = ~ r  + r cos  qo + 2 ~ v ~  

(f~ -- co) ark = acp" -- 2~uh  -- ~2e s in  ~o -- - -  

@U k U k 

a t . + - 7 - - + - - - -  

I ~P~ _~ ~ IAuk 2 ~v k u~l 
Ph Or r ~ Ocp ., r 2 ' 

t aP~ (Avh + 2 auk vh ) 
p~r a----~ + vk r~ a~ r 2 ' 

1 Ovh .  

r Oq~ = O, 

(3.2) 

where u k and v k are the deviations of the radial and azimuthal components of the velocity 
field of the liquid from the corresponding components of the field (3.1); Pk is the pressure; 
~k is the kinematic viscosity of the liquid; k = I, 2. 

The boundary condition of adhesion of the liquid to the surface of the cylinder is of 
the form 

u i = v i = 0, r = a. (3.3) 

The continuity conditions for the velocities and stresses and the kinematic condition 
on the interface between the liquids r = b-~(~} in a linear approximation with respect to 
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can be written as 

o~ 0% 1 
p~ - -  p~ + Q~b~ (p~ - -  p~) + 2 ~h ~ - r  - -  P~-gTr ] = 0, 

( 1  au~ a~. v~) ( t  au~ av 2 uo) 
~ 7 a~- + a ~  7 = ~ g  7 o~ + a ~  ~ ( 3 . 4 )  

= u~, v l = v~, (f~ - -  o~) a@ = u~, r = b. gl 

To ( 3 . 3 )  and ( 3 . 4 )  we s h o u l d  a l s o  a d j o i n  t h e  c o n d i t i o n  o f  b o u n d e d n e s s  o f  t h e  s o l u t i o n  
o f  t h e  s y s t e m  ( 3 . 2 )  when r = 0.  

4 .  The E x a c t  S o l u t i o n .  The b o u n d a r y - v a l u e  p r o b l e m  ( 3 . 2 ) - ( 3 . 4 )  a d m i t s  
t i o n .  I n t r o d u c i n g  t h e  Lamb p o t e n t i a l s  Ok, ~k by  t h e  f o r m u l a s  

a% 1 0r t a0~ 0% k = l ,  2, 
u~ =--O-;-r + -7" a---~' v~ = r acp Or ' 

of an exact solu- 

(4.1) 

we find, making use of the same methods as in [3]: 

~ - -  r 

Cz 2Re{I--= 2Q 

[ 00. Q~ ] 
p~ = p~ - -  (~ - -  co) - ~ -  + --g- (r ~ - -  b ~) + (o~sr cos ~ - -  2f~% , 

n (@ = 2 Be (n.e~*), 

(4.2) 

-x a (2) " M~(Xff)=e%bH~)(gf f);  Bn(k~r)=2e-X2bd~(~'2r); ~ = • ( ~--o)  ) where  Ln(Et r )=e  1 Hu (~qr), i -5- . - j  I + i ; • = 

(If~--~[/2vh)I/2; H~ )'(~), dn are, respectively, the Hankel and Bessel functions. The constants 
czl, c2L, c2, c13, c~, q,, c23 in the solution (4.2) satisfy a system of linear algebraic 
equations: 

3 - - ,  i + ~  % i Z I ( X l a ) = O ,  
t - -1 ;  e l l +  t - - ~  a 2 +"-a" 

3t_.~-- "~ ic l l  + ~ t  -Jr" T ~" a '''~-e2 ~lZo (~,1 a) + + Z 1 (~,1 a) = O, 

3i_~- * (on - -  c.~i) + i - - T b  2 i  + �9 % +_~_~ [Zl (~lb) - -  c~3R~ (~b)] = O, 

31 7" i (q~ - -  c~,) - -  ~ t  + * r" b 2c--& __ ~'lZo (~qb) + -b-- i (~'1 b) ' b + ~2R ~2b) 23 = O, 
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._~_)Rl(~b ) + --g- o(~,~b)]c2a= O, 

ib (~Z~)2 T = ( p , c n - - p 2 c 2 1 ) + p l  -g- ~,~b 2 -~---T~ ] c2  

X RI (%=b) + 2 ~ R o (s c2a = (9, -- p=) "c' ~s~, 
�9 a ' (4.3) 

~ ( 1 - - ' 0 ~ ,  = 3 - ~  %x t - - 7  7~ + " -~ 'R1  (~b )  c~3' Zn = claLn + c~Mn, "~ = o)1~. 

Using the solution (4.1)-(4.3) of the problem (3.2)-(3.4), we can obtain expressions 
for the stresses on the inner surface of the cylinder, as well as for the components of the 
hydrodynamic force with which the liquid filling acts on a unit length of the rotating and 
precessing cylinder: 

f~=2a~apl  Re [(l/2)m2a~ + 2 i (~  ~ Q)c2/a], 
(4.4) 

F n = - - 4 a p ~ ( ~  § o~) Re Q. 

I n  F i g s .  2 a n d  3 t h e  s o l i d  c u r v e s  i n d i c a t e  t h e  v a r i a t i o n  o f  t h e  f o r c e  c o m p o n e n t s  ( 4 . 4 )  a s  
f u n c t i o n s  o f  ~ / ~  when b / a  = 0 . 5 ,  v 2 / v z  = 0 . 5 ,  p 2 / p l  = 0 . 5 ,  vl/s2a 2 = 10 - s  and  t h e  s c a l e  o f  
t h e  f o r c e  i s  F* = ~a2p lc02e .  The c h a r a c t e r  o f  t h i s  v a r i a t i o n  i s  due  t o  t h e  r e s o n a n c e  e x c i t a -  
t i o n  o f  t h e  i n t e r n a l  w a v e s  i n  t h e  r o t a t i n g  n o n u n i f o r m  l a y e r e d  l i q u i d  f i l l i n g  o f  t h e  c y l i n d e r .  

I t  s h o u l d  b e  n o t e d  t h a t  t h e  c a l c u l a t i o n  o f  t h e  h y d r o d y n a m i c  f o r c e  w i t h i n  t h e  f r a m e w o r k  
o f  t h e  n o n v i s c o u s - l i q u i d  m o d e l  (~z  = ~2 = 0) y i e l d s  an  i d e n t i c a l l y  z e r o  c o m p o n e n t  F 4 and  an  
i n f i n i t e l y  l a r g e  c o m p o n e n t  F~ f o r  r e s o n a n c e  v a l u e s  o f  m /~ .  I n  t h e  c a s e  o f  a v i s c o u s  l i q u i d ,  
a s  c a n  b e  s e e n  f r o m  F i g .  2 and  F i g .  3 ,  t h e  two c o m p o n e n t s  h a v e  t h e  same o r d e r  o f  m a g n i t u d e  
i n  t h e  v i c i n i t y  o f  t h e  r e s o n a n c e s .  

We c a n  a l s o  d e r i v e  e x p r e s s i o n s  f o r  t h e  c o m p o n e n t s  o f  t h e  h y d r o d y n a m i c  f o r c e  i n  t h e  
v i c i n i t y  o f  t h e  r e s o n a n c e  m = ~ o b t a i n e d  f r o m  ( 4 . 3 )  and  ( 4 . 4 )  by  u s i n g  a s y m p t o t i c  e x p a n s i o n s  
f o r  t h e  c y l i n d e r  f u n c t i o n s  a t  s m a l l  v a l u e s  o f  t h e  a r g u m e n t  [ 5 ] :  

F~ = ap,~2a~e + O(D -- o), 

+ O ((~ - -  m) = In [ ~zal ), ( 4 . 5 )  

( ( ) ) ) ( ) ( ( )  ( P~ i + ~e b 2 92 " ba Ix~ ---~ b 

When p2 = 0, we = 0, the expressions (4.5) become the corresponding formulas of [3]. 
From the expressions given it follows that when the resonance w = ~ is passed, the component 
F~ changes sign. This is in agreement with the concept of "rotational friction" widely known 
in investigations on the stability of the rotation of rotors with internal friction [6]. 

5. The Approximate Method for Solving the Hydrodynamic Problem. In the case when the 
Eckmann numbers E k = Vk/[~ -- ~la z (k = I, 2) are small and a, h, and (a -- b) are of the same 
order of magnitude, the solution of the hydrodynamic problem formulated in Sec. 3 can be 
represented as the sum of two components: 

~h = U~# ) -~ U~ ), Uh = UP ) + U~ ), Pk = p~l) + p ~ ) .  ( 5 .  1) 

- ~1)  ~ l )  ~1) h a s  a s p a t i a l  s c a l e  o f  t h e  o r d e r  o f  a and  The l a r g e - s c a l e  f i r s t  c o m p o n e n t  u , v , p 

a p p r o x i m a t e l y  d e s c r i b e s  t h e  m o t i o n  o f  t h e  l i q u i d  i n  t h e  m a i n  v o l u m e ;  t h e  s m a l l - s c a l e  s e c o n d  
(2) (2) (2) ~ , , 

c o m p o n e n t  u k , Vk , Pk f o r m s  D o u n a a r y  l a y e r s  on t h e  i n n e r  s u r f a c e  o f  t h e  c y l i n d e r  and  
on t h e  i n t e r f a c e  b e t w e e n  t h e  l i q u i d s .  The  c h a r a c t e r i s t i c  s p a t i a l  s c a l e  o f  t h e  s e c o n d  c o m p o -  
n e n t ,  a s  c a n  b e  s e e n  f r o m  d i m e n s i o n a l  c o n s i d e r a t i o n s ,  i s  o f  t h e  o r d e r  o f  ( V k / l ~  --  m[) 1 /2  
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The large-scale component of the solution satisfies the system of equations obtained 
from (3.2) if we set v k = 0: 

(f~ - -  m) ~ = ~ r  + m2e cos qD + 2f~v~l! 

. ._~_ t OP (1) 
(~2 - -  o~) Ov}~) - -  2f~u(~ a) - -  r s i n  qo phr a(p 

orp 

t Op(h 1) 
Ph Or ' 

o v(1) o r u ~  + -g~- ~ = O. 
Or 

(5.2) 

We obtain approximate equations for the small-scale component of the solution in bound- 
ary layers on the inner surface of the cylinder and on the interface between the liquids. We 
substitute into (3.2) a solution in the form (5.1), where u~ I), v~l), p~l) satisfy (5.2) and 
U~2) = E~/2-(2)v~2)~2) p~2)~2) - -  

u k , = , = . We make the substitution r 0-r=E~/2~, ~ = ~, 

r0 = a, b, and letting E k approach zero, we leave the leading terms in the equations (3.2), 

a (2k  (2k ) s u m i n g  , , Pk and their derivatives with respect to r, ~ are of zero order as that 
As a result, we have 

Or =0, ( f ~ - c o )  o~p 

Ou~ z) 

Or 

with respect to E k. 

1 OP(u 2) O~v(2) 

= :  roP h O(p ~ ~k Or ~ , 

I a , ~  O. 
r o Oqo 

(5.3) 

Application of the standard procedure of boundary-layer theory presupposes first of all 
finding the large-scale component of the solution starting from the equations (5.2) with the 
boundary condition that the inner surface of the cylinder is impermeable: 

U(, 0 - - 0 ,  r - - - - a ,  ( 5 . 4 )  

and with the conditions of continuity of the normal components of velocity and pressure and 
the kinematic condition on the interface between the liquids: 

"Ul l) ___~ U (1). 
, (5.5) 

P(21) - -  P (11! -I- ~32brl (p~. - -  Pl) = O; ( 5 . 6 )  

(~-~o)@=up ~ for r = b ,  
(5.7) 

and then solving the actual equations of the boundary layer (or finding the small-scale com- 
ponent of the solution). The previously found large-scale component of the solution of the 
problem is used in formulating the boundary conditions for the boundary-layer equations. Such 
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a procedure, however, does not enable us to find the solution in a neighborhood of the wave 
resonances, since for resonance values of w/~ the solution of the nonviscous problem for the 
large-scale component becomes infinitely large. The nature of this difficulty lies in the 
fact that in a neighborhood of the wave resonances we must not disregard the reaction of the 
boundary layer on the large-scale component of the solution. In what follows, we shall pro- 
pose a modification of the standard procedure of boundary-layer theory which makes it pos- 
sible to get around the difficulty. 

We shall assume as an approximation that the boundary layers on the inner surface of 
the cylinder and at the interface between the liquids are of finite thickness, while outside 
the boundary layers the small-scale component is negligibly small. 

From the third equation of the system (5.3) with r0 = a, we have 

u(l~) t a ] v~2)dr, a - - 6 ~ r < ~ a ,  (5.8) a a(p 
a-5 

where 6 is the thickness of the boundary layer at the surface of the cylinder. Substituting 
(5.8) into the boundary condition for the normal component of the velocity at the surface of 
the cylinder u~ I) + u~ 2) = O, r = a and introducing the thickness 6*, defined by the expres- 
sion 

i u Q--m ~-~ ~?)d , ,  = - -  6 " ~ "  (~,  ~ - -  ~*), ~,  = T I ~ -  ~ I' (5.9) 

we obtain 

a a~ ~--~*)' (5.10) 

We take (5.10) as the boundary condition for the large-scale component of the solution for 
r = a instead of the condition (5.4). 

Similarly, from the third equation of the system (5.3) when r0 = b, we obtain 

b+~ 1 

u~ )= I 0 J v~)dr, b ~ r ~ b + 6 1 ,  b 8 T 
r ( 5 . 1 1 )  

b a~ 
b--8~ 

where 5 1 ,  62 are the thickness of the boundary layers at the interface between the liquids. 
Substituting (5.11) into the condition ~f continuity of the normal component of the velocity 
at the interface between the liquids u~ ) + u (2) = u(I) + u~2), r = b and introducing the i 2 
thickness 6b, defined by the expression 

b+~l b 

,[ v?)dr + f v~)dr=5~(vT)(b, T--~*)--v~l)(b, ~ - ~ * ) ) ,  
b b-~ 2 " (5.12) 

we obtain 

u~ ~) (b, qD) - -  u(~ 1) (b, q~) = 1 o 5~(v~O(b ' e#--(p*) --v(~X)(b, qD--cp*)). (5  13)  
b O~v 

We take (5.13) as the boundary condition for the large-scale component of the solution when 
r = b instead of (5.5). 

The kinematic condition at the interface between the liquids, taking account of (5.1) 
and (5.11), can be written as 

b+~l 

i 0 f v(12)dr, r = b .  ( ~ -  o~) = u [ "  + T o---i- , 
b 
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Introducing the thickness 6i, defined by the expression 

b+q 
5 v i i )d r  = - -  53 ( u i  1) (b ,  q) - -  q)*) - -  u~ 1) (b ,  q) - -  q) r  
b (5.]4) 

we obtain 

( ~ _ ~ )  oq<~) u ~ ) ( b , ~ )  i o 5 ~ ( v ~ ) ( b , ~ _ ~ . ) _ v ~ ) ( b , ~ _ ~ . ) )  ' (5.]5) 
0 9 b o~ 

We take (5.15) as the generalization of the kinematic condition (5.7) of the problem for the 
large-scale component of the solution. The condition (5.6) for the large-scale component 
when r = b is retained without any change. 

�9 ~ * ~ �9 . 
The thickness 6a, 6b, 51 appearing in (5.10), (5.13), and (5.]5) can be found by using 

the solution of the boundary-value problem for the small-scale component with the equations 
(5.3), the boundary conditions 

v~2)=--v~ 1), r=a, V~2)--v~ 2 ) = v ~ I ) - v p  ), (5.16) 
0 (2) 0 v(~) 

lliWvi = ~2-57 r 2 , r =  b, 

and the condition that the small-scale component is negligibly small outside the boundary 
layers. The third condition of (5.16) is obtained as E k § 0 from the condition of continuity 
of the tangential stress at the interface between the liquids when we make the additional as- 

that near the interface v (I) and V~ (2) are of the same order of magnitude. The con- sumption 

dition that the small-scale component of the solution is negligibly small outside the bound- 
ary layers, together with the first equation of the system (5.3), yields pk (2) E 0. Conse- 
quently the boundary-value problem for the small-scale component reduces to integrating the 

equations 

(~ --  o) av(k~) a%(h~) (k = i ,  2) (5.1 7) 
09 ' = vh - Or - - E -  

(k ) w i t h  t h e  bounda ry  c o n d i t i o n s  ( 5 . 1 6 ) ,  t h e  c o n d i t i o n  t h a t  v i s  n e g l i g i b l y  smal l  o u t s i d e  the  
and t h e n  c a l c u l a t i n g  u (2 )  by the  f o r m u l a s  (5 .8 )  and ( 5 . ] ] ) .  bounda ry  l a y e r s ,  

Thus ,  t he  p r o p o s e d  m o d i f i c a t i o n  of  t h e  s t a n d a r d  p r o c e d u r e  of  b o u n d a r y - l a y e r  t h e o r y  con -  
s i s t s  in the fact that the boundary-value problem for the large-scale component of the solu- 
tion is posed with the equations (5.2) and the boundary conditions (5.6), (5.]0), (5.]3), 
(5.15). This problem for 6~ = 6~ = 61 = 0 becomes the nonviscous problem (5.2), (5.4)-(5.7), 
which usually precedes the consideration of the motion of a liquid in boundary layers. 

Let us now consider the actual construction of the approximate solution of the boundary 
value problem formulated in Sec. 3 in the case when the Eckmann numbers Ei and E2 are small 
and a, b, and (G --b) are of the same order of magnitude. We shall try to find it in the 

form (5.1), setting 

ul~ )'(~) = 2 R e  u~ (1)'(2) (r)  e ~ ,  u (1)'(2) = 2 R e  v~ (1)'(2) (r)  e %  

pl 1) ~~ 
Pk - - i R e p ~ ~  k = i , 2 .  

From the  e q u a t i o n s  ( 5 . ] 7 )  w i t h  t he  bounda ry  c o n d i t i o n s  ( 5 . ] 6 )  we o b t a i n ,  by u s i n g  t h e  c o n d i -  
t i o n  that the small-scale component of the solution is negligibly small outside the boundary 
layers, the following: 

v ?  ) = - -  2 R e ( v ;  (1) (a) e ~ l ( a - ' ) + i ~ ) ,  a - -  5 < r < ~ a ,  

@) = - n0  [ ( 4  (" (b) - -  4 (" b r < b + 61, 

v~ 2) = ~ Re [(v~ (1) (b) --  v~ (1) (b)) e~,(b-O+~], b - -  5 3 < , ' ~  b, 

d = (pIpJ~pi) I!2, k = l ,  2. 

(5.18) 
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~) (z )  
The expressions for u~ , u 2 are obtained from (5.8) and (5.11), making use of (5.18). 
The condition for negligibility of the small-scale component of the solution outside the 
boundary layers will be satisfied if the provisional thicknesses of the boundary layers are 
chosen so as to satisfy the inequalities 

Having obtained the expressions (5.18), we find from (5.9), (5.12), and (5.14) that 

~ = ( ' ~ / 1 ~ - ~ I )  '/~, % = ~ - - ~ v  ~-i ~a, ~1 = + d). 

I n t e g r a t i n g  ( 5 . 2 )  w i t h  t h e  b o u n d a r y  c o n d i t i o n s  ( 5 . 6 ) ,  ( 5 . 1 0 ) ,  ( 5 . 1 3 ) ,  ( 5 . 1 5 ) ,  we o b t a i n  

u~ (1) = A~ + Bk/ 'r  z, v~ (x) = i (Ak  - -  Bh/r2),  

p~O) = i [(~ + m) Ah + (3~2 - -  m) Bh.lr 2] r,  k = 1, 2, 

where the constants A k and B k satisfy the system of algebraic equations 

B 1 6: e_i~, ' 
(1 - g~) A~ + (i + go)-7-  = O, g~ = 

,?  
(l--gb) A~+( l+gb)  s --(t--gb) A~=O, gb= 

(5.19) 

* 

(d -- ~o ~ Pa ] g~ = ~ e -'~*, B~ = O. q = i  

Using the'approximate expressions for the hydrodynamic elements, we can calculate the 
stresses on the surface of the cylinder and the force with which the liquid filling acts on 
a unit length of the rotating and processing cylinder: 

F~ = 2rta291 Re (r q- iD) ,  F n = --2~ta.2pl Re D, 

D = 2[QA1 q- (2~ - -  o3)B1/a2]. 
(5.2o) 

In Figs. 2 and 3 the dots show how the hydrodynamic force components F~/F*, Fq/F* vary with 
w/~, as determined in accordance with (5.19) and (5.20) for the parameter values indicated 
in the example given in Sec. 4. It can be seen that the approximate results are in good 
agreement with the exact values. 

The proposed modification of the standard procedure of boundary-layer theory simplifies 
the calculation of the hydrodynamic force components F~, F~ for small El, E2 and is espe- 
cially effective in the case when the cylinder is filled with more than two immiscible liq- 
uids. 

It should be noted that when ~ = ~, the thicknesses of the boundary layers become in- 
finitely large and the approximate constructions described above are not applicable. How- 
ever, a comparison with the exact solution shows that in a neighborhood of the resonance 

= ~ the variation of the force components F~, Fq as functions of ~/~ can be found with 
sufficient accuracy by interpolation between the extreme values, taking account of the fact 
that when w/~ = I, F~ has a minimum and F~ passes through zero. 

6. Boundaries of the Regions with Different Degrees of Instability in the Space 
of Problem Parameters. This, as has already been noted in Sec. 2, can be found from the con- 
ditions of realizability of circular precession of a rotating cylinder with a liquid filling. 
These conditions can be obtained by substituting into the right sides of (1.1) Fl = F~ cos 
~t -- F~ sin~t, F2 = F~ s~n~t + Fq cos ~t and substituting into the left sides of those equa- 
tions the expressions xl = E cos wt, x~ = s sin~t. As a result, we shall have 

F-- +- = K ,  - -  ~ \ ~ l  ' ~ 7F' 
: ( 6 . 1 )  

K ,  = K / m ~  2, H ,  = H / m Q ,  m = ~a~gz. 
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For fixed ~i/~a 2, (a -- b)/a, 02/01, ~2/~i, M/m, the conditions (6.1) parametrically define 
a curve (with parameter ~/~ along the curve) which divides the plane of the parameters of 
gripping of the cylinder axis H,, K, into regions D(n) with degree of instability n. This 
curve (the D curve) is completely analogous to the one constructed in [3]. In Figs 4 and 5 
we show the subdividing process carried out by the D curve when b/a = 0.5, ~i/~a 2 ='10 -5 , 
~2/p~ = 0.25, P~/Pl = 0.5, M/m = 1.68. The regions of stability are denoted by Di(0) and 
D2(0) . 

APPENDIX 

In the case of circular precession with small radius the point of intersection 
of the cylinder axis with the plane O~xlx2 describes a circle with some frequency ~, and 
the hydrodynamic fields vary with time at the same frequency in the system Olxlx2z. The sys- 
tem O~q undergoes periodic motion at frequency ~ with respect to Oxlx2. Consequently in the 
case of circular precession with small radius the motion of the liquids in the system O~q 
must satisfy the condition for periodicity in time with frequency ~. This condition is sat- 
isfied by the time-independent motion of the liquids in O~q (let us call it A), which was 
considered in Sec. 4. Suppose that together with this in the case of circular precession 
with small radius we can also have a second motion of the liquids in the system 0~ (let us 
call it A') which is periodically dependent on time with frequency ~. The differences be- 
tween the hydrodynamic fields of the motions A and A' satisfy a system of homogeneous Navier-- 
Stokes equations in the plane O~q linearized near quasisolid rotation of the liquids (3.1), 
from which, using the boundary conditions, we obtain 

~ f ~ r < o=,~. ~ < aw~ .,~ ( o %  o ~  ~1 2 j; 4 ) ) (A.1) 
0-T T#i~-1 ~ 0 h=1 ~h 

where w = e~w~ + e~wn is the difference between the velocity fields of the motions A and A'; 
~(~,t) is the distance along the radius drawn from the point 0 between the interfaces of the 
liquids in the motions A and A'; TI is the annulus a ~ r ~ b, T2 is the circular disk 0 ~ r 
b in the plane O~n. From (A.I) it can be seen that the differences between the hydrodynamic 
fields of the motions A and A' cannot be periodically dependent on time, and this contra- 
dicts the condition of periodicity of the motions A and A' themselves. We are left to con- 
clude that in the case of circular precession of the rotating cylinder with a liquid filling 
along a circle of small radius, the motion of the filling liquids with respect to the system 
O~ is independent of time. 
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FLOW SYMMETRY DISTURBANCE DUE TO THERMAL INSTABILITY 

V. V. Grachev and ~. N. Rumanov UDC 532.135 

The instability of the laminar mode associated with the origin of turbulence is usually 
inessential for flows of a strongly viscous fluid since the Reynolds numbers are small. In 
the forefront for such flows is the thermal instability detected and investigated in [I, 2] 
and elsewhere. It was shown in [2] that the thermal instability holds for the pressure drop 
Ap determined and results in jumps in the flow rate for definite critical values of Ap (hy- 
drodynamic inflammation and extinction). 

Meanwhile~ a thermal instability also occurs in electrical systems even for a fixed 
current (the analog of the mass flow in hydrodynamics), where the development of the in- 
stability results in inhomogeneous [3] or nonsynmaetric [4] modes. 

Disturbance of the flow symmetry through a pair of tubes (connected in parallel) is 
considered in this paper for a fixed total mass flow rate. It is shown that in contrast to 
an analogous electrical system [4], the disturbed symmetry is restored in the case under 
consideration as the flow rate increases. Restoration of the symmetry is due to the con- 
vective nature of the instability. 

I. The flow of a strongly viscous incompressible fluid through two cylindrical tubes 
connected in parallel and with a given total flow rate is considered. As the fluid moves, 
heat is liberated because of dissipation and is eliminated in the tube walls. 

The following equations hold for t:ubes connected in parallel 

l Z 

0 0 

where &p is the pressure drop between the entrance into, and exit from the tubes, r is the 
tube radius, I is the tube length, z is the coordinate along the tube axes, p is the dynamic 
viscosity, TI and T2 are the fluid temperatures, QI and Q2 are the mass flow rates, the sub- 
scripts I and 2 refer, respectively, to the first and second tubes, and Q is the total mass 
flow rate which is a given quantity. As ~egards the equation in the temperature, then under 
the conditions 

Pr  = ~/(9%) >> I ,  Pe  = Ql/(~rZ%) >> t ,  Bi = ~ @ 0 2 )  << 1, 

where • is the thermal diffusivity coefficient, p is the density, c is the specific heat of 
the fluid, ~ is the coefficient of heat transfer, Pr is the Prandtl criterion, Pe is the 
Peclet criterion, Bi is the Biot criterion, they take a form analogous to (1.11) in [2] for 
both tubes. In dimensionless variables 
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